## O.P.Code: 23ME0303

**R23** 

H.T.No.

## SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

## B.Tech. II Year I Semester Regular Examinations February-2025 THERMODYNAMICS

(Mechanical Engineering)

|                                                     |     | (Mechanical Engineering)                                                           |                 |           |            |
|-----------------------------------------------------|-----|------------------------------------------------------------------------------------|-----------------|-----------|------------|
| Tin                                                 | ne: | : 3 Hours                                                                          | Max.            | Mark      | s: 70      |
| PART-A                                              |     |                                                                                    |                 |           |            |
| (Answer all the Questions $10 \times 2 = 20$ Marks) |     |                                                                                    |                 |           |            |
| 1                                                   | a   | What do you mean by Boundary?                                                      | CO1             | L1        | <b>2M</b>  |
|                                                     | b   | Define Universe.                                                                   | CO1             | L1        | <b>2M</b>  |
|                                                     | c   | Enumerate the term heat.                                                           | CO2             | L5        | 2M         |
|                                                     | d   | State PMM-1.                                                                       | CO2             | L1        | 2M         |
|                                                     | e   | State second law of thermodynamics.                                                | CO3             | L1        | 2M         |
|                                                     | f   | Define the term Entropy                                                            | CO3             |           |            |
|                                                     |     |                                                                                    |                 | L1        | 2M         |
|                                                     | g   | What do you mean by triple point?                                                  | CO4             | L1        | 2M         |
|                                                     | h   | What is a Mollier chart?                                                           | CO4             | L1        | 2M         |
|                                                     | i   | Define COP.                                                                        | CO5             | L1        | 2M         |
|                                                     | j   | Explain the term psychometry in brief.                                             | CO <sub>5</sub> | <b>L2</b> | <b>2M</b>  |
|                                                     |     | <u>PART-B</u>                                                                      |                 |           |            |
|                                                     |     | (Answer all Five Units $5 \times 10 = 50$ Marks)                                   |                 |           |            |
|                                                     |     | UNIT-I                                                                             |                 |           |            |
| 2                                                   | а   | What is meant by thermodynamic equilibrium? Explain in brief.                      | CO1             | L1        | 5M         |
| _                                                   |     | Explain the concept of continuum in brief.                                         | CO1             | L2        | 5M         |
|                                                     | D   | OR                                                                                 | COI             |           | SIVI       |
| 2                                                   |     |                                                                                    | 001             | т 1       | 107/       |
| 3                                                   |     | What is quasi static process? Explain in detail.                                   | CO1             | L1        | 10M        |
|                                                     |     | UNIT-II                                                                            |                 |           |            |
| 4                                                   |     | Explain Joule's experiment with neat sketch.                                       | CO <sub>2</sub> | <b>L5</b> | 10M        |
|                                                     |     | OR                                                                                 |                 |           |            |
| 5                                                   | a   | The properties of a closed system change following the relation between            | CO <sub>2</sub> | L4        | <b>5M</b>  |
|                                                     |     | pressure and volume as $pV = 3.0$ where p is in bar V is in m3. Calculate the      |                 |           |            |
|                                                     |     | work done when the pressure increases from 1.5 bar to 7.5 bar.                     |                 |           |            |
|                                                     | b   | One kg of Air is heated from 200C to 1050 C. Find the change of internal           | CO <sub>2</sub> | L1        | 5M         |
|                                                     |     | energy and change of enthalpy. Assume Cp=1.01 KJ/KgK and Cv=0.72                   |                 |           |            |
|                                                     |     | KJ/KgK.                                                                            |                 |           |            |
|                                                     |     | UNIT-III                                                                           |                 |           |            |
| -                                                   |     |                                                                                    | 003             | T =       | 103/       |
| 6                                                   |     | Develop an expression for Carnot Cycle and efficiency of cycle.                    | CO3             | L5        | <b>10M</b> |
| ~                                                   |     | OR                                                                                 | 004             | T 2       | 403.5      |
| 7                                                   |     | A carnot engine working between 4000 C and 400 C produce 130 KJ of work.           |                 | L3        | 10M        |
|                                                     |     | Determine i) The thermal efficiency. ii) the heat added iii) The entropy           |                 |           |            |
|                                                     |     | changes during the heat rejection process.                                         |                 |           |            |
|                                                     |     | UNIT-IV                                                                            |                 |           |            |
| 8                                                   |     | A certain gas has cp = 1.968 kJ/kg K, and cv = 1.507 kJ/kg K. Find its             | CO <sub>4</sub> | L3        | 10M        |
|                                                     |     | molecular weight and gas constant. A constant volume chamber of 0.3m3              |                 |           |            |
|                                                     |     | capacity contains 2kg of this gas at 50C. Heat is transferred to the gas until the |                 |           |            |
|                                                     |     | temperature is 1000C. Find the work done, heat transferred and the changes in      |                 |           |            |
|                                                     |     | internal energy, enthalpy and entropy.                                             |                 |           |            |
|                                                     |     | OR                                                                                 |                 |           |            |
| 9                                                   |     | Derive the Clausius-Clapeyron equation with neat sketch.                           | CO4             | 1.3       | 10M        |
| ,                                                   |     |                                                                                    |                 | IJŲ       | 10141      |
|                                                     |     | UNIT-V                                                                             |                 |           |            |
| 10                                                  |     | Describe a simple vapour compression cycle with the help of p-h and t-s            | CO <sub>5</sub> | L2        | 10M        |
|                                                     |     | Diagram.                                                                           |                 |           |            |
|                                                     |     | OR                                                                                 |                 |           |            |
| 11                                                  |     | Describe any five psychometric processes with neat sketches.                       | CO <sub>6</sub> | <b>L2</b> | 10M        |
|                                                     |     | *** END ***                                                                        |                 |           |            |
|                                                     |     |                                                                                    |                 |           |            |